





# APAQ C130<sup>™</sup> 2-Draht Transmitter für Thermoelemente mit NFC-Technologie



Der smarte Schienentransmitter APAQ C130<sup>™</sup> überzeugt durch höchste Zuverlässigkeit und brilliante Performance. Dank des neuen robusten Designs ist der Messumformer äußerst unempfindlich gegenüber äußeren Einflüssen wie z.B. Vibration und EMV-Störungen.

Der neue APAQ C130 $^{TC}$  überzeugt durch einfache Bedienbarkeit und optimiert so die Wirtschaftlichkeit durch einfache Konfiguration, Installation und Inbetriebnahme. Teure und komplizierte Konfigurationstools gehören der Vergangenheit an. Der neue APAQ C130 $^{TC}$  wird bequem und einfach mit NFC-Technologie über ein Smartphone konfiguriert.

## Der Thermoelementspezialist

Der APAQ C130™ unterstützt die gängigen acht Thermoelemente.

## Temperaturlinearer Ausgang

4...20mA, temperaturlineares Ausgangssignal.

## Kompaktes Gehäuse

Nur 10,5 mm hoch, passt in alle DIN-B Anschlussköpfe.

## Beeindruckende Langzeitstabilität

Max Drift von ±0.05°C oder ±0.05% der Spanne / Jahr.

## **Robustes Design**

Vibrations- und stoßfeste Bauart.

## Einfache Montage und Verkabelung

Der APAQ C130<sup>TC</sup> ist für den Einbau in Anschlussköpfe DIN B oder größer vorgesehen. Das Zentrumsloch von 7 mm erleichtert das Herausziehen der Sensorleitung oder des Einsatzrohres.

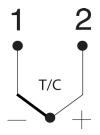
#### Drahtlose Konnektivität

Die Konfiguration erfolgt mittels Nahfeldkommunikation (NFC) mit einem Smartphone.

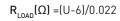
# INOR Connect, Easy-to-use App für intuitive Konfiguration

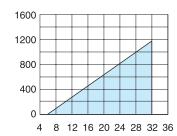
Die bedienerfreundliche App erleichtert die Konfiguration. Der APAQ C130<sup>TC</sup> besitzt eine NFC-Schnittstelle für die Kommunikation mit der App - INOR Connect. Mit der App lassen sich die Einstellungen direkt vor Ort auslesen, schreiben, speichern und teilen.




# Technische Daten

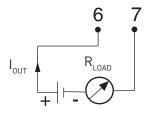
| Eingang Thermoelement              |                       | Messbereich                                            |
|------------------------------------|-----------------------|--------------------------------------------------------|
| TC Typ B - Pt30Rh-Pt6Rh (IEC 60584 | 1                     | 0+1820 °C / +32+3308 °F                                |
| TC Typ E - NiCr-CuNi (IEC 60584)   | J                     | -270+1000 °C / -454+1832 °F                            |
| TC Typ J - Fe-CuNi (IEC 60584)     |                       | -210+1200 °C / -346+2192 °F                            |
|                                    |                       | -270+1200 °C / -346+2172 °F                            |
| TC Typ K - NiCr-NiAl (IEC 60584)   |                       |                                                        |
| TC Typ N - NiCrSi-NiSi (IEC 60584) |                       | -270+1300 °C / -454+2372 °F                            |
| TC Typ R - Pt13Rh-Pt (IEC 60584)   |                       | -50+1750 °C / -58+3182 °F                              |
| TC Typ S - Pt10Rh-Pt (IEC 60584)   |                       | -50+1750 °C / -58+3182 °F                              |
| TC Typ T - Cu-CuNi (IEC 60584)     |                       | -270+400 °C / -454+752 °F                              |
| Eingang Impedanz                   |                       | >10 MΩ                                                 |
| Maximaler Schleifenwiderstand      |                       | 5 kΩ                                                   |
| Cold Junction Kompensation         |                       | Intern oder fest                                       |
|                                    |                       |                                                        |
| Sensorüberwachung                  |                       |                                                        |
| Sensorbruch                        |                       | Upscale (≽21.0 mA) oder Downscale (≤3.6 mA)            |
|                                    |                       |                                                        |
| Ausgang                            |                       |                                                        |
| Ausgangssignal                     |                       | 420mA, temperaturlinear                                |
| Sensorfehler                       |                       | gemäß NAMUR NE 43                                      |
| Einstellbarer Filter               |                       | 0.4 bis 26 sek.                                        |
| Bürde (siehe Diagramm)             |                       | 818 Ω bei 24 VDC                                       |
| Barae (Sierie Biagraiiii)          |                       | 010 11 001 24 100                                      |
| Allgemeine Daten                   |                       |                                                        |
| Galvanische Trennung               |                       | Keine                                                  |
| Versorgungsspannung                |                       | 632 VDC                                                |
| rersorgangsspannang                |                       | 002 400                                                |
| Umgebungsbedingungen               |                       |                                                        |
| Umgebungstemperatur                | Lagerung und Betrieb  | -40+85 °C / -40+185 °F                                 |
| omgebungstemperatur                | Lager and and Detries | -40+03 67-40+103 1                                     |
| Feuchtigkeit                       |                       | 098 % RF (nicht kondensierend)                         |
| Schwingungsfestigkeit              |                       |                                                        |
|                                    |                       | gemäß IEC 60068-2-6, Test Fc, 102000 Hz, 10 g          |
| Umgebungseinflüsse                 | C. I. I.              | gemäß IEC 60068-2-31:2008, Test Ec                     |
| EMC                                | Standards             | Nach: 2014/30/EU                                       |
|                                    |                       | Harmonisierte Standards: EN 61326-1, EN 61326-2-3      |
|                                    | Erweitert             | ESD, Radiated EM-field, Magnetic Fields: Criteria A    |
|                                    |                       | Burst, conducted RF: Criteria A                        |
|                                    |                       | Blitzschlag: Standardabweichung 1% der Spanne          |
| RoHS, China RoHS                   |                       | Direktive: 2011/65/EU und 2015/863/                    |
|                                    |                       | EU Harmonisierter Standard: EN IEC                     |
|                                    |                       | 63000 China RoHS 2                                     |
|                                    |                       |                                                        |
| Genaugkeit                         |                       |                                                        |
| Typische Genauigkeit               |                       | (Bis zu)                                               |
| TC Typ R, S, T                     |                       | ±2.0 °C oder ±0.2 % der Messspanne                     |
|                                    |                       | ±3.6 °F oder ±0.2 % der Messspanne                     |
| TC Typ B (<100 °C / <212 °F)       |                       | Keine Angabe                                           |
| TC Typ B (100 °C400 °C / 212 °F7   | 52 °F)                | ± 10 °C / ± 18 °F                                      |
| TC Typ B (>400 °C / >752 °F)       | <u> </u>              | ±2.0 °C oder ±0.2 % der Messspanne                     |
| 10 Typ B (*400 07 * 702 T)         |                       | ±3,6 °F oder ±0.2 % der Messspanne                     |
| TC Typ E, J, K                     |                       | ±1 °C oder ±0.2 % der Messspanne                       |
| 10 1yp L, 3, 10                    |                       | ±1.8 °F oder ±0.2 % der Messspanne                     |
| TC Typ N (-100+1300 °C)            |                       | ±1 °C oder ±0.2 % der Messspanne                       |
| 10 Typ N (-100+1300 C)             |                       | ±1.8 °F oder ±0.2 % der Messspanne                     |
| TC Tue N ( 270 100 90)             |                       | ±2.0 °C / ±3.6 °F                                      |
| TC Typ N (-270100 °C)              |                       | ±2.0 °C / ±3.0 °F                                      |
| 0 11 1 1: 0 : 1 :1                 |                       | T : 1 :100 / :100 F (                                  |
| Cold Junction Genauigkeit          |                       | Typisch ±1 °C / ±1.8 °F (max ±3 °C / ±5.4 °F)          |
|                                    |                       | innerhalb Umgebungstemperaturbereich                   |
| Aufwärmzeit                        |                       | Nach ca. 20 min. ist die typische Genauigkeit erreicht |
|                                    |                       |                                                        |
| Spanne min. Thermoelement          |                       |                                                        |
| ТС Тур В                           |                       | 700 °C / 1260 °F                                       |
| TC Typ R, S,                       |                       | 300 °C / 540 °F                                        |
| TC Typ E, J, K, T                  |                       | 50 °C / 90 °F                                          |
| TC Typ N                           |                       | 100 °C / 180 °F                                        |
|                                    |                       |                                                        |
| Temperatureinfluss                 |                       |                                                        |
| TC Typ B, E, J, K, R, S, T         |                       | ±0.02 % der Spanne °C / ±0.012 % der Spanne °F         |
| TC Typ N (-100+1300 °C)            |                       | ±0.02 % der Spanne °C / ±0.012 % der Spanne °F         |
| TC Typ N (-270100 °C)              |                       | ±0.2 % der Spanne °C / ±0.12 % der Spanne °F           |
|                                    |                       |                                                        |



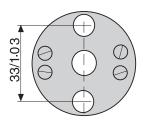


| Einfluss der Versorgungsspannung      | <±0.005 % der Spanne pro Volt                 |
|---------------------------------------|-----------------------------------------------|
| Langzeitstabilität                    | ±0.05 % der Spanne / Jahr                     |
|                                       |                                               |
| Bauform                               |                                               |
| Material, Entzündlichkeit             | PC/ABS + PA, V0                               |
| Montage                               | Anschlusskopf DIN B oder größer /             |
|                                       | DIN-Schienenadapter                           |
| Anschluss                             | Einzel-/Litzendrähte, max. 1.5 mm² / AWG 2412 |
| Gewicht                               | ca. 25 g                                      |
| Schutzart, Gehäuse / Anschlussklemmen | IP 65 / IP 00                                 |

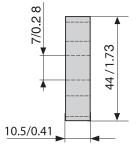
# Eingang




# Ausgangsbürdendiagramm







Versorgungsspannung V DC

# Ausgang



## Abmessungen





mm/inches

## Bestellinformation

| APAQ C130 <sup>™</sup>                      | 70C1300211 |
|---------------------------------------------|------------|
| Anschlusskopfmontage-Set                    | 70ADA00017 |
| DIN-Schienenadapter und Schrauben (10 Stk.) | 70ADA00027 |